Sunday, March 19, 2017


  Coming to Los Angeles we had the sensation of slipping into a cultural fogbank. We could not say whether we were actually being bombarded by messages from microwave ovens or watched by cameras concealed in television screens, but the sense was that we had departed from reality.

Frankly we consider ourselves a citizen of the world and find it discomforting to experience provincialism whether upon re-entry to the United States or having conversations in some distant back country hostel. We are not speaking of localization or bioregionalism — all well and good. Rather, what we encountered in Los Angeles was the absence of a fact-grounded worldview across a broad spectrum of the population. Had we been gone that long?

The media has cannibalized the minds of millions — drawing their mental attention toward the issues that are bounced around in these information echo chambers and syphoning it away from the deep, systemic threats humanity is now confronted with. The Algonquin Tribe of North America has a name for this phenomenon; they call it Wetiko. It is a mind virus that endlessly consumes the life energies of people (in this case, the emotional energy given to feed this media monster) while neglecting the life-supports that would heal and protect the living things of this world.

We are blessed to be able to be with a diverse cross-section of people who truly get the big picture, to and to have exchanges and strategy sessions in beautiful centers like London, Paris, Marrakech and Tulum. We offset that travel and our other activity with our personal forest, bamboo groves, and keylined biochar tea applications.  We recognize not everyone can have that luxury so we enter into these conversations with humility, gratitude and purpose. Whatever we take away we apply immediately, directly and with good effect.

Fog moves in over the Pacific, Malibu, March 2017
In Los Angeles we experienced that many people are uninformed about climate change, the Deep State, or even elemental biophysical economics. Moreover, most people we encountered did not want to know. This is not something that more education, a trending app or a blockbuster film will fix. Even if they were engaged in admirable pursuits like provisioning food kitchens in the massive and growing tent cities of the homeless, or seeding green rooftops, verges and balconies that might contribute some of that much-needed food, they were, in other profound ways, making the more overarching problems far worse in ways they were blissfully ignorant of. Here we use ignorant at its root — willfully ignoring. The wetiko mind virus had infected them.

And for us, this perception cut to the quick of who we are and what we do. Do we really want to spend our life saving places like Los Angeles? It isn’t merely that they may be undeserving of salvation, although they may. It is that most of their inhabitants, even the well-intentioned, are actively pursuing an agenda that is antithetical to survival. They are the drowning swimmer who tries to drown the rescuing lifeguard.

The severance of a society from reality, as ours has been severed from collective recognition of the severity of climate change and the fatal consequences of empire and deindustrialization, leaves it without the intellectual and institutional mechanisms to confront its impending mortality. It exists in a state of self-induced hypnosis and self-delusion. It seeks momentary euphoria and meaning in tawdry entertainment and acts of violence and destruction, including against people who are demonized and blamed for society’s demise. It hastens its self-immolation while holding up the supposed inevitability of a glorious national resurgence. Idiots and charlatans, the handmaidens of death, lure us into the abyss.
— Chris Hedges, The Dance of Death

Low Income Housing, Los Angeles
When we began this series we posted a chapter called “Three Pillars” that used some new terms coined by Naffiz Ahmed to describe civilization’s plight. In his lecture at the Global Sustainability Institute of Anglia Ruskin University that subsequently became a full throated exposé of the Deep State, published on February 10, 2017, Ahmed made the salient point that what is playing out in the Trump presidency is a battle of world views, with no possible winner.
Neither side truly understands that they both remain locked into the old, dying industrial neoliberal paradigm. That both the conventional Republican and Democrat strategies have failed. And that if they continue to ignore and overlook the reality of the global systemic crisis and its escalating symptoms, they will both become increasingly disrupted and irrelevant to large sectors of the American population.

In that scenario, politics will become increasingly polarized, not less so. Republicans will seek to shore up their white nationalist support base while Democrats will continue to lose credibility as a genuine critical voice due to their establishment myopia.

Ahmed says that ultimately this will lead to even more violence:

Both pro- and anti-Trump factions of the Deep State are in denial of the fact that this escalating crisis is due, fundamentally, to the global net energy decline of the world’s fossil fuel resource base.
In a time of fundamental systemic crisis, the existing bedrock of norms and values a group normally holds onto maybe shaken to the core. This can lead a group to attempt to reconstruct a new set of norms and values — but if the group doesn’t understand the systemic crisis, the new construct, if it diagnoses the crisis incorrectly, can end up blaming the wrong issues, leading to Otherization.

For every degree to which Trump upscales aggression, America’s real national security will be downgraded. And like any good despot, Trump’s failures will become food for his own propaganda, to be conveniently blamed on the myriad of Others who, in the small minds of the Trump faction, are preventing America from becoming ‘great again.’
Erebus Wong, Lau Kin Chi, Sit Tsui and Wen Tiejun, writing for the independent socialist Monthly Review,  observe that China’s industrial strength comes not from the sprinkling of some magic fairy dust or the discovery of oil superfields but from the inherent power of rural farmers grounded in nature. The Chinese countryside, they note, “has become the source of a vast ‘labor reserve,’ allowing the state to rely on sannong—the so-called ‘three rurals’ of peasants, villages, and agriculture — as the foundation of China’s turbulent but continuous modernization over the last sixty years.”

Brickwork on million-dollar Malibu home
Chinese rural society has been able to absorb the risks of this modernization because of the strength of its relation to nature, an advantage that has never been adequately acknowledged. Chinese agricultural society has been formed on the basis of common needs, such as irrigation and disaster prevention. This interdependence creates a collective rationality, with community, rather than the individual peasant or family, as the basic unit in the distribution and sharing of social resources. This focus on collective needs runs directly counter to the Western emphasis on individual interests. Over thousands of years, Chinese agricultural society has become organically integrated with the diversity of nature, giving rise to an endogenous religion of polytheism. As it plans and promotes its vision of sustainable development and peaceful trade, China should look inward, to these age-old social structures, as a guide to the future.

What the authors describe as “collective rationality” is actually a description of the rationality of natural systems. Rural peoples live within, and allied with, those rational patterns. When we visited Los Angeles, what we were seeing was not so much a collective neurosis as a collective separation from underlying rationality.

Sure, there are elements of earth-restoration, ecocity design and city repair within Los Angeles, but even those seemed to us largely divorced from the realization that the city’s food comes from fossil energy, not deepening soil, the city’s water comes from disappearing aquifers and vanishing snow melt, and that the fracked gas that heats their buildings and lights their streets is upsetting the balance of nature upon which those other things depend.

Rescuing Angelinos, or any megalopolis inhabitants (the Chinese included) from their almost certain fate will be a serious challenge, and one we will explore in our continuing installments in this series.

This post is part of an ongoing series we're calling The Power Zone Manifesto. We post to The Great Change on Sunday mornings and 24 to 48 hours earlier for the benefit of donors to our Patreon page.


Sunday, March 12, 2017

The Sheer Wall

"A system that places monetary value on products and services but places little value on their source is not sustainable."
  Although the practical tools to reverse climate change are already available, to date the scale to which they have been implemented is not even remotely close to what needs to be accomplished within a very short time. Two vital elements are still missing: shared vision and concerted collaborative action.

How do we get areas the size of India planted in mixed-aged, mixed-species, soil-regenerative, storm- and drought resilient agroforest, grassland and wetland with well-trained and motivated, self-financed productive cooperative management? And do it all again next year? And the year after, and the year after that for the next half century?

The Secretary General of the British Commonwealth looked at this question and, with the help of a few of her friends, proposed a portfolio of answers.

In October, 2016, Patricia Scotland convened the Commonwealth’s Workshop on Regenerative Development to Reverse Climate Change. Over the course of the workshop, particular emphasis was placed on the issue 
of language and terminology.

To date, the discourse surrounding responses to climate change has been largely negative. Focusing primarily on the scale of the problem and the severity of its consequences, the language employed in the debate has often been alienating, effectively producing a general sense of apathy and disempowerment. In a reversal of this trend, the workshop emphasized a reframing of the debate from problems to potential, and the solutions that flow from potential. In doing so, the aim was to inspire a real call to action.

Of course, changing outlook from pessimistic to optimistic does not make it so. As we have said here before, we humans are nasty pieces of work. Why are there no more mastodons, Atlantic gray whales or Great Auks? How is it that although there were many hominid species roving Earth at one time, ours became the only one, and by what means? What are we doing to the whole of our co-evolved biodiversity as you read these words? What part of that sorry picture is genetically hard-wired, and what part is merely cultural?

The Commonwealth’s report observes:

The primary result of the workshop was the consensus that there are proven techniques readily available to effectively address climate change and regenerate the capacity and capabilities of communities and ecosystems. Drawing on substantial bodies of evidence, recalling numerous success stories and outlining countless potential interventions, the participants agreed that the means to effect real change through regenerative development already exist. The real challenge of the workshop, therefore, was to identify ways to put these means into practice and mobilize action.

The meeting recognized that a statement of the problem and a list of potential solutions is not enough. There has to be the means and the desire to get solutions underway.

The group decided that from a social perspective, it is necessary to develop capabilities to use effective frameworks and processes to align desire 
and action. As practical matter that meant that the world economic paradigm has to shift from resource extraction and exploitation to exhaustion (both material and human) to increasing biological capacity as the driver for economic and social satisfaction of needs.

Only increased photosynthesis is going to rebalance the carbon cycle at this point. But it can’t be a cookie-cutter approach. As the report put it, “Techniques that work well in one context may not be immediately transferable to another; Island nations, for example, have different regenerative needs and potential to landlocked nations.”

Commonwealth Workshop, London, Oct 29-30, 2016
A key finding from the workshop was that a shift in the definitions of wealth and capital is necessary to reverse climate change. That is quite a pill to swallow. But the truth is inescapable:

As things stand, behaviors that increase energy consumption, extraction, production, consumption, pollution, and degradation are generally rewarded. Such activities are promoted as the basis of wealth creation, yet this is demonstrably false. Earth’s natural resources and processes are the source from which all financial capital is derived. It’s impossible for derivatives to be more valuable than their source. A system that places monetary value on products and services but places little value on their source is not sustainable, and it is necessary for humanity to redefine its relationship with the natural world accordingly. Education, information dissemination, and appropriate policy and economic incentive structures are critical in shifting individual behaviors and social ideals, to properly value natural wealth. 

The workshop caught on to a key principle that we have been hammering away at here: this does not have to be financially painful. It can even be reasonably profitable.

Attracting finance means developing approaches that are not only effective at reducing atmospheric carbon, but also generate a realistic return on investment measured by the full range of current Capitals (natural, human, manufactured, social, and/or financial.)


The Paris Agreement adopted at COP21 has been described as an historic turning point. Now that we have agreed to turn, however, we must start going in a new direction. Regenerative development is this new direction. This involves not only limiting carbon emissions at their source but also sequestering them into standing forests, regenerated grasslands, improved soil and innovative production processes that lock carbon into materials. Through the adoption of regenerative approaches, climate change can be reversed through the recovery and regeneration of the biosphere. Redesigning humanity’s presence on Earth to shift from extractive to regenerative is essential for realizing our species’ potential for shared health and prosperity.

What the workshop participants recommended were some very concrete, easy-to-implement approaches that are unlikely to draw fire from entrenched positions. Community-led initiatives — ecovillages, transition towns, civic drives — are key. They will build local capacity 
for people to work together to help themselves and to realize the unseen regenerative potential within the unique conditions of their local cultures and ecosystems.

But communities do not exist outside of their national context. In this the Secretariat was very helpful. Overseeing 52 countries of common language and culture and almost a third of the world’s population (over 60% of which are under 30 years old), the Commonwealth is ready and willing to lead the way by offering to assist the transitional policies of member governments. 
The way forward that it envisions is by exponentially growing a network of trainers, or “knowledge multipliers,” that can train other trainers around the world but more importantly, inspire.

Finally, the realpolitik of Brexit, Trump and the crash of Ponzinomic petrodollars means that financing has to be more creative than merely looking to government grants, which ultimately rely on tax revenues. Again echoing what we have said here, the workshop concluded:

From the project side, all initiatives must be designed to attract investment and achieve productive returns. At the same time, funding mechanisms and a clear case for investment need to be developed to enable investors to direct their funds to this necessary work.

Singer cartoon in Beijing magazine
By analyzing the role of the different forms of capital (material, human, social, manufactured and financial), it is easy see how a capitalist system would develop an unsustainable bias towards placing manufactured capital on a pedestal. By conceptualizing manufactured goods as an endpoint, solely from a consumerist perspective, the creation of “wealth” can be simplistically reduced to profit from efficient exploitation without regard to externalities, such as planetary or social health. This has the undesirable effect of limiting the regenerative potential of human activity. By reconceptualizing to circular economics and biomimetic thinking, manufactured capital comes to depend on regenerative practices.

Social and ecological capital are captured by linking financial gain to the Sustainable Development Goals (SGDs). Only by striving to meet the 17 development goals can a regional development agenda, or a national economy, be considered to be balanced in all forms of capital appreciation.

At the close of the workshop plans were sketched for the establishment of a “Commonwealth Online Incubator for Regeneration & Restoration.”

This online platform would focus on the practical and immediate implementation of regenerative projects, while simultaneously acting as an awareness-raising medium and repository of information. The incubator will invite applications for projects, selecting and supporting the most promising on a yearly basis. Each year, new projects will be brought to fruition while the previous are monitored and evaluated, creating a continuous cycle of action and learning. Furnished with relevant information, the platform will map and detail the results of incubated projects, disseminating demonstrably effective approaches among communities and decision-makers.

In January, 2017, the Commonwealth drafted a Regenerative Development to Reverse Climate Change Collaborative Manifesto. Among the things it called for were
 “ecosystems of solutions:”

Our people-centred approach aims to help local communities across the Commonwealth to help themselves, enabling them to create elegant ecosystems of solutions carefully adapted to the bio-cultural uniqueness of place. In doing so, we will:

  • reverse climate change 

  • increase biomass and bio-productivity 

  • increase and protect bio-cultural diversity 

  • accumulate organic matter as a real store of wealth and health 

  • increase community resilience 

  • build food, energy, and water sovereignty at the community level 

  • leverage the power of collaborative abundance 

  • and address environmental degradation and the causes for hunger, 
poverty, ill health, migration, and war. 

Our hope is to become a welcome species, functionally indistinguishable from the organisms and ecosystems we admire. We look forward to fitting in, at last and for good, on this home that is ours, but not ours alone. 

How do we ecoforest areas the size of India or Australia, year in - year out?

The Commonwealth’s 52 nations include ecosystems that speak for the diversity of all the planet’s climates, covering 40 percent of the world’s land mass, over 20 percent of her forests, and the largest area of coastlines, fronting all the world’s oceans. It also includes 31 of the 39 most vulnerable nations to climate change. Is that big enough?

This post is part of an ongoing series we're calling The Power Zone Manifesto. We post to The Great Change and Medium on Sunday mornings and 24 to 48 hours earlier for the benefit of donors to our Patreon page. 

Sunday, March 5, 2017

Climate Ecoforestry

"Want to leap the social barrier to cool living? Behold: a stargate."

  In 2008 we asked Frank Michael a tough question. Frank is a physicist, formerly with the Ames Research Center group that created the first Flying Solar Laboratory to study the sun and its “weather” and prevent astronauts from being fried by solar storms. We asked him what would happen to atmospheric carbon if everyone on earth planted a tree each day.

It was an interesting question, and one that was not easy to answer. Frank explained some of the variables to us. You would want to know what kind of trees are planted; what their lifespan will be; what happens to their carbon store when they die; the net photosynthetic productivity of the forest, by hectare, based on soils, rainfall, latitude and expected climate change; the effect of all the stored carbon in the ocean that would “leak back” into the atmosphere in response — trying to re-balance the distribution of carbon dioxide — and much more.

Nonetheless, he agreed to give it a go. Thus began a system model that Frank Michael will be presenting at the 7th World Congress on Ecological Restoration later this year in Foz do Iguassu, Brazil.

The question changed to “what amount of trees, land and biochar would be needed to return the atmosphere to ‘normal’ and how long would it take?” We know much less about paleoclimate drawdowns and feedbacks than we know about epochs of carbonization. As his calculations and his global model became more elaborate, he began to be drawn to the complexity of the social dimension. What are the potentials for unplanned reversals like deforestation, population pressure, energy demand and urban sprawl? How many of those trees would survive one year? 5 years? 100 years? Who would care for them and how would those people be compensated? How would you pay for the biochar conversion?

Frank Michael and LuLu Stove
Frank asked, instead of every man, woman and child planting a tree a day, would it not make more sense for teams of tree planters to be gainfully employed, with nursery managers, advance planners, follow-on caregivers and the rest? How could those perennial reforesting economies be created?

Wangari Maathai, as inspiring as she was, would not have been able to create the Green Belt movement in Kenya had she not been supplied continuous international grants with which to pay her forestry teams.

Frank also looked at the ecological dimension. Shouldn’t the forests be optimized for ecosystem functionality, with virtuous cycle gains in biodiversity, soil fertility, complexity and regenerative resilience? Therefore, should we not avoid monoculture plantation plantings and instead favor mixed-aged, mixed-species polycultures of root crops, ground cover, intermediate canopies, standing deadwood, climbing vines and forest giants?

Frank came up with a model that we can only describe as pure genius, worthy some day of a Nobel Prize should he ever be recognized. His “step harvest” system, which we first described in The Biochar Solution, sets out a practical methodology for employing hundreds of millions of forest stewards to regenerate and revitalize neglected and abandoned “wastelands,” working with principles of ecological regeneration and patch management to stack yields while optimizing ecological functions. Rather than rely on charity, it relies on capitalism – a healthy return of investment in semi-autonomous but coordinated microenterprises.

Today we call this system “Climate Ecoforestry.”

During interglacial periods, the Earth normally enjoys relatively stable weather patterns and large increases in the biodiversity and expansion of vegetated ecosystems. That is changing.  Extreme weather swings, melting of glaciers and polar ice, large plumes of methane rising from ocean clathrate sediments, and the massive decomposition and outgassing of CO2 and CH4 from the world's tundras are signs of great difficulties for humanity just ahead. We can expect increasingly severe and frequent heat waves, storms, floods, droughts, rising seas, flooded cities, Arctic vortices, forest fires, and crop failures.

If the burning of all fossil fuels were stopped today, the effect on global climate would be minimal. This is the result of the relative chemical inertness of the principal greenhouse gas, carbon dioxide (CO2), and the thermal and chemical inertia of the world's massive mineral, oceanic and forest carbon sinks. While switching from fossil to renewable energy sources is necessary and desirable for ecological, economic, and health reasons, it is no longer sufficient to stabilize the climate. What is required is a direct, rapid, massive, and sustained removal of petagrams of carbon dioxide from the atmosphere, using effective, timely, verifiable and economically sustainable methods.

There are compelling reasons for the extremely rapid implementation of such an undertaking. Within a few decades of business-as-usual, extreme climate volatility will make forestry and agriculture difficult and no longer cost-effective over large regions of the world. Furthermore, at the current atmospheric CO2 concentration of  >400 ppm, the planet has passed the threshold into a region in which a methane-emissions-driven runaway climate is more likely, and where even more severe amplifying climate feedbacks are likely. Each year it becomes more urgent to 1) sequester all the past, current and future global fossil fuel CO2 net emissions and 2) rapidly bring atmospheric CO2 to well below 350 ppm, preferably to preindustrial levels of 240-260 ppm.

Climate Ecoforestry is a viable methodology for retracing our way back to the Holocene relatively quickly. Permaculture and ecovillage design provide the means to implement and to take that to scale rapidly enough to matter. What is often called “social permaculture” is a key element, because it is not enough to temporarily halt emissions or start using techniques of agroforestry and carbon farming (or BECCS, which we'll describe separately). Those efforts have to be sustained for several human generations. The trees and perennial crops that are planted now have to stay there, and if storms, droughts or fires remove them, they need to be replanted. There needs to begin a transgenerational culture of stewardship.

The social glue is cognitive semantics training, and the economic engine will be, in most cases, small (village) scale microenterprise hubs that we are calling the Cool Lab. Key to that is capital redirection and training of trainers.

Climate Ecoforestry at its most basic is a process of optimizing land use for its photosynthentic capacity. In plants, algae and cyanobacteria, solar energy capture in the form of sugars is produced by light-independent reactions called the Calvin cycle. Some bacteria use different mechanisms, such as the reverse Krebs cycle, to achieve the same end. In the Calvin cycle, atmospheric carbon dioxide is incorporated into already existing organic carbon compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, including long carbon chains like fructose and glucose. Carbon is taken from the atmosphere and stored in the cells of a growing plant.

This process is the foundation of life on Earth. The energy of the sun is captured, first in light-gathering proteins of bacteria, then chloroplasts of plants, then in the cell membranes of plants and animals, and finally as labile carbon to feed the needs of living organisms and provide ecosystem services. As a biproduct we get oxygen and the biological types of life we've come to know and love.

Carbon is very special. To say it is the building block of life is almost an understatement. It is difficult to conceive of how life could exist without its unique abilities.

Carbon’s compact atom can form more different compounds than any other element. It can even form covalent (shared-electron) bonds with other carbon atoms, which in turn can share electrons with others and so on, forming long strings, complex branchings and "head-to-tail" rings of carbon atoms. There is practically no limit to the complexity of carbon branches or rings. Allotropes include diamond, graphite, graphene, buckyballs and carbon nanotubes.

Eight allotropes of carbon: a) Diamond, b) Graphite, c) Lonsdaleite, d) C60 (Buckminsterfullerene or buckyball), e) C540, f) C70, g) Amorphous carbon, and h) single-walled carbon nanotube or buckytube. Design created by Michael Ströck 

Biochar is made by heating carbonaceous biomass while excluding oxygen. Molecular carbon transformation creates a skeletal, sponge-like structure. In soil, biochar:

1. holds moisture, air and nutrients, promoting biological activity.
2. moderates nitrogen distribution
3. improves compost maturity and humic content
4. accelerates plant growth

This is the foundation of Frank’s climate ecoforestry model. A mixed-age, mixed-species, ecosystemically-oriented, climate-resilient forest, perennial grassland and wetland, plant and animal system is gradually established, augmented, with biochar at its root zone. While not reducing its productivity as a whole system, vegetation is pruned, coppiced and selectively harvested and both soils and vegetation renewed at intervals determined by energy and nutrient flows, rainfall, growth cycles and planting capacities. The daily harvest is taken to the Cool Lab for processing.

With human ingenuity, biochar becomes a microenterprise incubation engine, using the unique structural qualities of carbon to fashion products and services as varied as the creative instincts of those making and using them. It closes the pass-through resource-to-waste chain and builds circular economies.

There establishes a gradient of inwardly directed intensity. The outer spiral edge is agroforestry; serving as green buffer, photosynthesis depository and biodiversity accumulator. Inwardly concentrating are semi-autonomous self-organizing microenterprises: polycultures of aquatics, perennial grasses and animals in pasture, legumes, and coppice crops. At center the Cool Lab produces bioenergy, leaf nutrient concentrates, biochemicals and biomaterials. Many products and services are sequentially cascaded outward to periphery from the same labor and energy input.

The flexible lab design allows highly variable production of different streams, maximizing value creation by real time adjustment to local and global demands and available enterprise talent. Typical biomass energy systems have net energy returns of 2 to 4 percent rendering them unlikely replacements for fossil energy with a much higher EROI (energy return on investment). The Cool Lab produces and consumes its own energy by biomass conversion. By cascading value (products and services) from the same source, it can raise EROI to triple digits. Potential yield is limited only by human imagination. "Waste" is a stranded verb.

The model creates long-term jobs and educational opportunities and allows self-financing of a viral economic model.

The recalcitrant carbon cycle — biomass to biochar — locks carbon away for thousands to millions of years. While useful to stimulate the soil biology, it has the added benefit of holding more oxygen and water, which better mitigates the damage of extreme weather. It also helps the nitrogen cycle, something seriously out of balance but seldom mentioned.

By growing perennial supergrass pastures and feedstocks, combining compost and manures with biochar, and feeding biochar as a nutriceutical to herds of migrating herbivores, the story becomes one of negative emissions — net sequestration — almost immediately, continuing indefinitely. And the best part: it produces profits from the start, no carbon markets, taxes or subsidies required (although those could serve as accelerants if used with care).

Now comes the arithmetic. Frank’s model predicts that if ramped up to a planting rate of 200 million hectares per year (Mha/yr), equivalent to four Spains, in 24 years it would cover 4.8 Gha and be sequestering 14.6 gigatons of carbon per year (GtC/yr) or 2.7 times the current net global emissions.  Can we find 4.8 Gha to plant? Yes, and without disturbing existing farms, cities, or having to green the deserts (although that may also be desirable as we restore larger hydrological cycles). The land is there at the margins, and it has been inventoried and cataloged. Climate change is actually expanding the no-longer-commercially-viable land available for these uses.

Because Earth’s oceans balance carbon concentrations with the atmosphere, as carbon is withdrawn from one, the other responds by refilling it. To remove six gigatonnes from the atmosphere and have it stay that way, we have to actually remove twelve.

The model shows that continuing rotational cycles at 200 Mha/yr on the same land would sequester a cumulative 667 GtC, the amount of carbon required to bring atmospheric CO2 back to 300 ppm by year 56. With reductions in fossil fuel emissions, 300 ppm could be achieved on years 45 to 48, depending on the scale of reductions. If the rate of implementation were raised to 300 Mha/yr, the goal of 300 ppm would be reached in years 35 to 37 from startup.

These numbers may change. While many less ambitious studies exist, as far as we know Frank Michael is the first to integrate so many variables into a single model, and to attempt to incorporate the labile and recalcitrant carbon cycles (biochar), the known unknowns of reverse forcings, and human labor. As more researchers work over these models, improve upon them, and test them against real world results, there can be little doubt that these early beginnings will seem primitive and be superceded by much more elaborate calculations.

What the model says answers the question of whether we can reverse climate change in a time frame short enough to matter. The answer is yes, we can. What it cannot answer is whether we will.

This post is part of an ongoing series we're calling The Power Zone Manifesto. We post to The Great Change and Medium on Sunday mornings and a day earlier for the benefit of donors to our Patreon page.

Sunday, February 26, 2017

Cicero and the Summer of 45

"Happiness, Cicero said, is not dependent on things that pleasure the body, but on pleasures of the mind."

The philosopher Marcus Tullius Cicero introduced the Romans to the chief schools of Greek philosophy and was likely the most influential philosopher in ancient times but met his demise by getting too intimate with the politics of the period. He lived during the last days of the Roman Republic, in the latter half of the century before Christ. It was a time of power struggles, civil wars and the ascent and fall of Julius Caesar. 

Following Caesar’s death, Cicero became an enemy of Mark Antony and made the mistake of attacking the new Emperor in a series of speeches. His 54-year-old severed head was hung in the Roman Forum. 

Of Cicero’s books, six on rhetoric have survived, as well as parts of eight on philosophy. Of his speeches, 88 were recorded and 58 survive.

Among the surviving is Cicero’s De finibus bonorum et malorum (“On the ends of good and evil”).
That was really a quintology — 5 books — written over the course of about 6 weeks in the Summer of 45 (BC). Published 7 months before the assassination of Caesar, Cicero dedicated it to Brutus.
Cicero wanted to know, what is pleasure, what is good — what motivates us? Why are we here? What constitutes a good life? Using Socratic dialog, he attacked the hedonistic definition of pleasure and moved on to Stoicism and the proposition that by moral conduct humans can choose to live good lives. Cicero doubts the notion of moral human as the natural state, and rejects Stoical exclusion of other creature pleasures. In this Cicero prefigures what we are only now being told by neurobiologists about our meta-programmed predilections.

In the last book, Cicero describes what for him would seem a perfectly happy life, which includes both pursuit of virtue and external goods. At the end of the book, Cicero critiques the logical inconsistencies of his own conclusions, but not the broader principles, and says that while he has reservations, he designs his own life around these prescriptions.

Coming from challenging times filled with political intrigues, outright civil wars, assassinations, coups d’état and the cruelest of military empires, Cicero knew that humans are nasty pieces of work and that social order always hangs by a tenuous thread. What creates happiness is neither “busy pleasures which dally with our senses” nor “the fulsome satisfactions of eating, drinking and venery,” “like baboons and swines.” Even the absence of pain is not enough to create happiness, although it helps. Happiness, he said, is not dependent on things that pleasure the body, but on pleasures of the mind.

Among the aphorisms found in De finibus are:
  • All things start from small beginnings.
  • Nature abhors a vacuum.
  • No one wishes pain, but occasionally circumstances occur in which toil and pain can procure some greater good.
  • ’Tis an excess of pleasure not to feel a trifle uneasy.
If increasing average national happiness is the goal of advanced capitalist societies and economies, then something seems to have gone awry. Whilst high income economies may have largely failed to date to decouple their economic growth from the most important measures of ecological footprint and impact, they have had more unwitting success in decoupling it from increasing the happiness of their populations. Various studies using both cross-national and within-country longitudinal data indicate that the correlation between happiness and per capita income or GDP seems to become weak or even disappear, at a level past about US $10,000 per year.
For the past two centuries as a fossil-fueled technological revolution rocketed industrial productivity, neither leisure time nor security of food, health and shelter increased for the broad masses of humanity. Instead of translating productivity gains into affluence for the many, including ecological health, growing and globalized population kept downward pressure on wages and job availability —bringing about the socially accepted meme of casino economies and affluence for the few. For the few, this created previously unimagined wealth. For the many, it augured diminished expectations for succeeding generations.
We are in a bind that can no longer be moderated by changing to or from a gold standard, or cryptocurrency, or using complicated debt stimulus. Production and consumption are equal evils. As we peer over the edge of the cliff we are about to dive from, we keep hearing ideas about steady state economies, circular economies, gift economies and the like. Some of these pay more attention to biophysical constraints than previous economic models did. But do they pencil out in the social sphere? Can they stick as memes? Is there enough time left to matter?

Cicero agreed with Aristotle that humans are a kind of moral diety, and fulfillment in life comes from meeting the ends “whereunto he is born, (through) observation and action, as a horse to racing, or an ox to ploughing….” (translation by Jeremy Collier)

Eleven years ago, in The Post-Petroleum Guide and Cookbook: Recipes for Changing Times, we began our now-seemingly relentless theme:

The principal challenge of the Great Change is not physical but mental (as it is in any survival situation). Collectively, societies that are heavily addicted to consumer goods and the pattern of waste that a consumer culture creates will have to struggle to adjust to a new normal. It will not be optional and neither money nor social position will allow you to escape.

The easy path is to downsize expectations and simplify your lifestyle. This path requires giving up certain ways of looking at the world in order to embrace other, more survival-oriented ways. The hard path is to try not to make this change, to somehow cling to the old ways as long as possible, which will entail huge — I would say cruel — efforts for diminishing yields.

The prosperous way down, to borrow Howard and Elisabeth Odum’s term, is not necessarily about working shorter hours and earning less, although that may become part of it. It is about making your daily activities something you control, rather than something that controls you. 

Carl Honoré, a spokesperson for the Slow movement, suggested some painless ways to slow down that will fit any budget:
  • Walking instead of driving
  • Giving children more free time
  • Reading instead of watching television
  • Eating home-cooked meals with family and friends
  • Taking up relaxing hobbies such as painting, gardening, or knitting
  • Practicing yoga, tai chi, or meditation
  • Unplugging from technology
  • Indulging in leisurely love-making
  • Simply resisting the urge to hurry unnecessarily
The presence of the clock gave birth to the notion that time lies outside our bodies — that it can be tracked by a machine, and that we can sit and watch it “fly” by, tick-tock, as though it is something linear, containable, and separate from the organic, flowing process of life.
— Jose Arguelles, 2005

You can go rent a good surfer movie like Waveriders, Blue Crush or Step into Liquid and it lays out a sensibility of timelessness. When the waves aren’t running high enough, hard core surfers work, building boards or flipping burritos. Otherwise, “productivity” is measured by how close one can come to a perfect ride.

The opposite of growth is not contraction (except for population and resource extractions, which have to fall back to within natural limits). The opposite is a more graceful steady-state. That requires a shift from the material world to the real sources of happiness and fulfillment as humans. These are things surfers have already discovered.

Could it really be as simple as this? That to escape the bust that follows the boom, we only have to stop fighting it and enjoy living with less? Many who have gone that route say they would not go back. Substantial working time reduction in a way that successfully reconciles environmental and well-being goals — already brought about by simple policy changes in Sweden, the Netherlands and Belgium — can and does work.

We know from observations over millennia that population expansions are paused but not arrested by the four horsemen. The only proven way to change fertility rates and have that stick is by improving the quality of life for women, small children, and the elderly, through social mores, and not by any other means. Running in a squirrel’s cage after infinite growth is folly.

In Metamorphosis, the Roman poet Ovid, born nine months before Cicero’s murder, retold the Greek’s story of Icarus who took flight on wax wings made by his father, Daedalus. When Icarus ignores his father’s warning not to fly too high, the sun melts the wax, and Icarus falls into the water and drowns. Like Icarus, our parents fashioned wings from fossil fuels and a few among them even warned us not to fly too high, lest we upset the thin atmosphere that shields us from the sun.

We don’t like limits. Ice Age after ice age, hominid populations have risen and fallen. Our cycles of expansion and contraction always wound up advancing civilization in the end. The latest expansion, propelled to untenable excess by draining deep reservoirs of soil carbon and deeper hydrocarbons, came with an expiration date. And yet we pile clever debt instruments upon even more clever debt instruments and build our globalized economy in the same way one builds a snowman — by rolling around balls of wet snow.

What happened to Icarus is the same as is happening to us, or to the snowman: the sun. It doesn’t need to be this way. We simply have to learn to relax.

Sunday, February 19, 2017

Mount Pleasant

"The problem is not our understanding of the science or the efficacy of our potential solutions. The problem is human willingness to do the right thing before its too late."

  We first latched onto the notion of catastrophic climate change back around 1980 when we were a young attorney taking quixotic cases involving impossible-to-rectify injustices like cancers among atomic veterans, trespass of sacred sites or nuclear waste disposal, and shoving those insults under the noses of attorneys-general, judges and justices to try to get a reaction.

Occasionally we would finesse a surprising win and that helped attract donations to keep the enterprise running and the entertainment value high, attracting more donors, and so it went.

One such case was against the deepwell injection of toxic effluent from the manufacture of pesticides and herbicides by agrochemical companies in Mt. Pleasant, Tennessee. The effluent in question had been extracted from an aquifer and tested by State laboratories where was quickly ranked as the most concentrated poison they had ever pulled from the wild. A single green fluorescent drop killed all the fish in the tank. There were 6 billion gallons injected under Middle Tennessee from 1967 to 1980. It made Love Canal look like the kiddie pool.

As we mustered our arguments to go before state regulators and appellate judges, we were compelled to counter some rather absurd arguments being advanced by the mop-up squads of high-priced attorneys for the companies. They said, “Heckfire, Tennessee has plenty of water,” meaning there was no good reason to protect the nonpotable (mineral-rich) waters of the Knox Aquifer a mile down.

Apart from the fact that the Knox is an artesian source of water for area industries and thereby already protected from “contaminants” whether toxic or not by the federal Safe Drinking Water act, we advanced two principal lines of argument, bringing in expert witnesses and entering scientific studies into the record.

Our first line was population growth. Tennessee was growing and what may seem like a lot of water in 1980 may not be nearly enough in 2080. The second line was climate change.

We argued that global warming was advancing, just as scientists had been consistently predicting for the past hundred or more years, and that it would put pressure on water supplies not just in Tennessee, but across the continent.

At that time science suggested warming in the 20th century of about half a degree Celsius. Those were the good old days. Nonetheless, persuading a country judge that global warming was real and something to be concerned about was no mean feat.

We had to pull out the big guns. We went to our local congressman and got his assistance to troll the federal agencies for useful studies. We holed up in Vanderbilt science library poring over journals and books on climatology. We spoke to some key figures in the field at that time — Stephen Schneider, Susan Solomon, Kerry Emanuel, Edward A. Martell, Mario Molina — and we assembled that advice into legal briefs and memoranda.

All in all, we scared the bejesus out of ourselves.

The case lingered on for a number of years but by 1985 had been largely resolved by gutsy State regulators, who wrote new rules that essentially prohibited hydrofracking. The companies shut down the injection wells, closed their factories soon after (the phosphate ores that had attracted them in the first place having long since played out and the costs of hauling in by train making the location uneconomical) and moved on. The litigation cost meter ceased running and the death threats stopped. But we were still beset by unshakable malaise.

We had seen the future, and it was different than we had previously imagined. It was not our father’s future.

The materials gathered over the course of ten years were published in our book, Climate in Crisis: The Greenhouse Effect and What We Can Do. The book came out on the heels of two other fine 1989 books that said essentially the same thing: Stephen Schneider’s Global Warming and Bill McKibben’s The End of Nature, all to resounding popular disinterest.

Fast forward a quarter century and we were still very much in a funk about what the future holds. When our granddaughter was born in 2005 we felt very sad for her.

We were still tracking the literature, still going to conferences, still speaking with experts, but until the International Permaculture Conference in Sao Paolo, Brazil in June, 2007 we had not found much to call hope.


It was at the Ecocentro do Cerrado that year that we caught a first fleeting glimpse. Andre Soares and his partners were conducting experiments in recreating terra preta do indio – the Amazonian Dark Earths. They were, not coincidentally, massively sequestering carbon while growing wholesome food.

Just over a year later, in September 2008, the Permaculture International Journal sent us to Newcastle, England to report on "Biochar, Sustainability and Security in a Changing Climate,” the 2d International Conference of the International Biochar Initiative, with over 225 attendees from 31 different countries and over 70 presentations. That, and some intervening trips back to Brazil to visit the archaeological sites near Manaus, provided the source material for our 2010 book, The Biochar Solution: Carbon Farming and Climate Change.

For those readers who might be new to biochar, the Virgin Energy Challenge offers this quick synopsis:

Biochar is a relatively low-tech approach inspired by the terra preta soils found in the Amazon basin. These black, fertile soils were created in pre-Columbian times by indigenous farming cultures. They mixed wood char, crushed bone, and manure into the otherwise relatively infertile Amazonian soil to build crop beds. The wood char, though not a fertilizer per se, served to buffer nutrients from the bone meal and manure. It apparently served as a soil analog of a coral reef. Its porous structure and nutrient buffering surface area created a favorable microenvironment for communities of soil fungi and other organisms that aided soil fertility.

Terra preta soils, once well established, appear to be self-sustaining. So long as crop cover protects them from wind and water erosion, they maintain their high level of soil carbon and productivity long after additions of the materials that built them have stopped. In fact they gradually increase in depth as new material composts. In the Amazon basin, thick terra preta soil beds built as far back as 450 BCE remain productive and highly valued by local farmers to this day.

Terra preta soils were initially thought to be peculiar to the warm, wet environment of the Amazon basin. Research has shown, however, that similar results can be obtained in temperate regions by amending soils with formulations of biochar and other ingredients tailored to local soil and crop conditions. The amount of carbon that can potentially be stored in this manner is huge; the amount currently stored as soil carbon has been estimated as 2,300 GT, nearly three times the 800 GT of carbon now present in the atmosphere. If soil carbon could be increased globally by an average of just 10%, it would sequester enough carbon to return atmospheric CO₂ to pre-industrial levels.

The issue with biochar then is not the amount of carbon it could ultimately sequester in the soil; it’s (surprise!) economics. There’s little doubt that a well designed program of soil building, incorporating use of biochar as an element, would be an effective way to sequester carbon while providing long term economic value to farmers. It would boost crop yields while reducing the amount of fertilizer needed. It would also reduce water runoff and nutrient leaching while improving drought resistance. On the other hand, biochar is costly to produce and distribute in the amounts needed, and it may take decades for the considerable investment in soil quality to pay off financially.

The key to success for biochar will come down to technology for producing it from local resources, and dissemination of knowledge for how to employ in in a broader program of soil building. A sense of the complexities can be found in a document from the International Biochar Initiative: Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems. The three VEC finalists developing biochar display the diversity of product and business strategies possible for addressing these complexities.

There are a few errors in that account, but they are trifling. Biochar is not a “relatively low-tech” approach, it is about as low-tech as you can get. Some Amazonian deposits, similar to those “as far back as 450 BCE,” are ten times older than that. Most estimates put soil carbon at 2500-2700 PgC, not 2300 PgC. You don’t need to increase carbon content to 10 percent globally, 5 percent would probably do it, but remember: we were at 20-plus % soil carbon before the age of agriculture and most soils are hungry to get that back. Building it back with biochar makes a more permanent repair, not just moving the furniture around, as other Virgin Challenge competitors — BECCS (Biomass Energy Carbon Capture and Storage), direct air capture and holistic grazing — do.

Biochar gave us hope, but it did not, in and of itself, solve the climate crisis.  We asked that question at the close of our book — “Can it scale quickly enough?” The answer, from what we have seen at the recent UN climate conferences and the lack of early adoption as the dominant farming paradigm, is — “Probably not.”

The rapid rise of global temperature that began about 1975 continues at a mean rate of about 0.18°C/decade, with the current annual temperature exceeding +1.25°C relative to 1880-1920 and +1.9°C relative to 1780-1880. Dampening effects by the deep oceans and polar ice slow the effects of this change but global temperature has now crossed the mean range of the prior interglacial (Eemian) period, when sea level was several meters above present. The longer temperature remains elevated the more amplifying feedbacks will lead to significantly greater consequences.

While global anthropogenic emissions actually declined in the past decade, there is a lag time for consequences. The rate of climate forcing due to previous human-caused greenhouse gases increased over 20% in the past decade, mainly due to a surge in methane, making it increasingly difficult to achieve targets such as limiting global warming to 1.5°C or reducing atmospheric CO2 below 350 ppm. While a rapid phasedown of fossil fuel emissions must still be accomplished, the Paris Agreement targets now require “negative emissions”, i.e.: extraction of CO2 from the atmosphere.

The first rule of holes is, when you find yourself in one, stop digging. We, the two legged hairless apes, are still digging.

In a recent Soil Day paper presented to the American Geophysical Society and the Society for Ecological Restoration, Harvard professor Thomas Goreau wrote:

“Already we have overshot the safe level of CO2 for current temperature and sea level by about 40%, and CO2 needs to be reduced rapidly from today’s dangerous levels of 400 parts per million (ppm) to pre-industrial levels of around 260 ppm.”

Goreau, citing the work of John D. Liu and ourselves, provided his prescriptions:

"Current rates of carbon farming at typical current levels would take thousands of years to draw down the dangerous excess CO2, but state of the art methods of soil carbon sequestration could draw it down in as little as decades if the percentage of long lived carbon is raised to as little as about 10%."

Here we note that Dr. Goreau’s arithmetic is much better than the 4 pour 1000 or Holistic Management calculations we criticized last week. Goreau has distinguished labile carbon from “long lived carbon” and not limited land area just to existing farms. He advocates 10 percent rather than 4 tenths of a percent. He continues:

While all soils can, and must, be managed to greatly increase soil carbon there are two critical soil leverage points that will be the most effective to reverse global climate change, namely increasing the two most carbon-rich soils of all, Terra Preta, and wetlands. These are the most effective carbon sinks for very different reasons, Terra Preta because it is 10-50% carbon by weight, composed of biochar, which can last millions of years in the soil. Wetland soils can be up to pure organic matter, because lack of oxygen prevents organic matter decomposition. Wetlands contain half of all soil carbon, and half of that is in marine wetlands, which occupy only about 1% of the Earth’s surface but deposit about half of all the organic matter in the entire ocean. Yet they are often ignored in both terrestrial and marine carbon accounting. Marine wetland soils have more carbon than the atmosphere, but are being rapidly destroyed in the misguided name of “economic development.”

Biochar is what soil scientists call “recalcitrant carbon,” meaning that it does not readily combine with other elements unless high temperature heat or some other catalyst is present. Consequently, as much carbon as can be gleaned from the normal “labile” carbon cycle and turned into recalcitrant carbon can be kept from the atmosphere. We know from the experience of the terra preta soils that it doesn’t just stay out of the atmosphere for a few seasons, it traps carbon in the soils for thousands of years.

Switching to renewable energy will not arrest climate change. None of the schemes that involve planting trees can succeed unless they also include biochar. None of the claims of Allan Savory, Joel Salatin or the Holistic Management movement for mob grazing, or any of the claims related to organic, no-till, animal-drawn carbon farming by Eric Toensmeier, Michael Pollan, Vandana Shiva and others pencil out to reverse climate change unless you include biochar. Even then, the area required for biochar-augmented conversion of land-use, farming and forestry is massive — something like 7-10 Spains per year, and maybe more. Anything less than that and the ship goes down.

When we first grasped this in Brazil in August 2006, it provided our first “ah ha!” moment. But then we concluded it likely can’t scale fast enough, by gradual adoption through word of mouth or a few good books, to prevent Near Term Human Extinction. In October 2007 we called that our "Houston Moment," not in the sense that "Houston we have a problem" but because we were in Houston at an ASPO meeting when it dawned on us — it may already be blown. The death sentence for our species — in the next century if not this one — could have been handed down even before we were born.

The problem is not the science or the efficacy of the solution. The problem is human willingness to change. There also seems to be something called profit that always complicates matters. We will tackle that, and offer some possible ways forward, in our coming posts.

Sunday, February 12, 2017

The Orphaned Solution

"By combining compost with biochar, or feeding biochar to those herds of migrating herbivores, the story could become one of negative emissions — net sequestration — almost immediately, continuing indefinitely. "

   Let's summarize: so here we stand. The ocean is going out, the fish are flopping in the sand. Do we stay and scoop them up or do we run for the hills?

If the problem we have is too much carbon in the sky (and conversely too little in the ground), then the solution is to deprive the sky while feeding the ground.

And yet, for much of the climate change policy community, biochar is still not on their radar. It’s too new. 

In 2011 a Duke University study by the Technical Working Group on Agricultural Greenhouse Gases reviewed the research literature to assess the state of knowledge on the mitigation potential of a wide range of agricultural land management activities. They reported:

Out of 42 practices reviewed, 26 seem to have positive mitigation potential. Eleven of those were supported by significant research (more than 20 field or lab comparisons), 13 by a moderate level of research, and two, while promising, have little research.

Despite an 8000-year track record of adding and holding carbon in soils, biochar was among those last two. The other was mob grazing through Holistic Management.

Eric Toensmeier’s book, The Carbon Farming Solution, which is otherwise excellent, falls into this trap, falsely labeling biochar untested and potentially dangerous.

He may draw this conclusion from two seriously flawed (not to say insidiously undermined) studies by the US National Academy of Sciences and the UK Royal Society. Both of those studies lumped biochar under the heading of geoengineering and then assigned it to the same dumpster as all the other already debunked carbon capture schemes without bothering to speak with any actual biochar scholars.

For the geoengineering techno-utopians, methods of atmospheric carbon extraction such as BECCS, air capture of CO2 or limestone salting imply estimated costs of 100 to >570 trillion dollars to deploy, and entail large risks with uncertain feasibility and duration. Among the uncertainties is our ability to muster sufficient political consent to impose expensive taxes and tariffs on carbon emissions in order to justify the economic burden of these efforts. When faced with dire economic environments, the public may simply choose to disregard moral duties towards future generations.

Biochar, in contrast, requires no tax subsidies (although that would accelerate the needed conversion) because it provides enough financial rewards as a renewable energy source and biofertilizer to justify the cost of making it from various woody wastes, most of which are burned away. It is easy to verify — just do annual or decadal soil tests — and easy to perform life-cycle costing because it has been commercially available for many years.

Reframing Biochar

When we use terms like “carbon-minus” or “carbon-negative” we set off associations that immediately cause the majority of us to back away, or to regard the information as detrimental to us in some way. Last week we spoke of the important work on cognition provided by Alfred Korzybski’s theory of general semantics.

Just as an aside, one of Korzybski workshops, in the Autumn of 1939, was attended by a 25-year-old William S. Burroughs and the 36-year-old Samuel I. Hayakawa.  Hayakawa, the nephew-in-law of Joseph Stalin, went on to become president of San Francisco State College (where, among the students he trained, was Stephen Gaskin) and a US Senator for California (1977-83) where he had untold influence on the seductive rhetorical practices of silver-screen-idol-turned politician Ronald Reagan and the Republican Party he led, later catalogued by George Lakoff in Don't Think of an Elephant! Know Your Values and Frame the Debate.

We know that words that seem threatening, such as those that imply, hard conditions, forced austerity, higher taxes and so on, trigger a denial reflex in the human brain, one which was not possessed by our mammalian ancestors but which is important to our genetic survival. Once we realized that not only is it our karma to kill to live (right down to the billion of helpless microbes in every teaspoon of tofu), but each of our fates to suffer and die, we would go raving nuts were it not for the saving grace of the denial reflex.

So what should we use instead of carbon-minus? We like “cool.”

Cool soothes the brain and chills the endorphins that might cause denial impulses to form. Cool is chill. We are more relaxed, more receptive.

An example of "cool" branding was provided by the pilot Carbon Minus Project in Kameoka City, Kyoto Prefecture, Japan. The Hozu rural farmers' cooperative, concerned about the overgrowth of bamboo that was destroying satoyama (managed forest commons) began producing bamboo biochar to amend their soils. Using a "Cool Vege" brand to denote the benefit of carbon sequestration, the university assisted cooperative demonstrated impressive success in marketing their produce to climate-conscious consumers.

Nothing stands in the way of the "cool" brand being extended to any product or service that reverses climate change. It is a sticky meme.

4 pour 1000

There are other reasons that good solutions may not get traction that have less to do with our fight or flight reflex. At COP-21 in Paris in 2015 the French government backed an initiative called 4 pour 1000. France had obtained pledges from over 25 countries – and would bring that number to 50 during COP-21 – as well as hundreds of food, agriculture and research organizations.

The "4/1000 Initiative: Soils for Food Security and Climate" was a voluntary effort launched through the Lima-Paris Action Agenda.

"The conclusion is simple," said French Foreign Minister Le Foll. "If we can store the equivalent of 4 per 1000 (tons of carbon) in farmland soils, we are capable of storing all man-made emissions on the planet today."

"This is the most exciting news to come out of COP-21," said Andre Leu, president of IFOAM - Organics International. "By launching this initiative, the French government has validated the work of scientists, farmers and ranchers who have demonstrated the power of organic regenerative agriculture to restore the soil's natural ability to draw down and sequester carbon." It positions farmers as the pioneering climate heroes of the next generation.

But then what happened? At COP-22, France still featured 4 pour 1000 in its literature and displays, but it had attracted few new adherents or pledges in the year since Paris. There were no real success stories to point to, no carbon fields waving in the sunlight. Just hot air.

Food writer Michael Pollan, in a Washington Post Op-Ed during the Paris summit, wrote:

Marin County ranchers have found that applying a single layer of compost, less than an inch thick, to rangelands stimulates a burst of microbial and plant growth that sequesters dramatic amounts of carbon in the soil - more than 1.5 tons per acre. And research has shown that this happens not just once, but year after year.

If the practice were replicated on half the rangeland area of California, it would sequester enough carbon to offset 42 million metric tons of CO2 emissions, roughly equal to all the CO2 emitted by the State's electric utilities each year. Adding an inch of compost to all the rangelands each year would sequester as much as electric utilities, residential and commercial emissions combined.

What is left out of that calculation are the big gorillas in California's emissions picture: the industrial sector (77 million metric tons) and transportation, most notably the freeway system (200 million metric tons). California would need to convert its deserts to rangelands to get that much carbon locked away every year.

That is really the problem with 4 pour 1000: the math doesn’t pencil out. Le Foll’s goal of adding 0.4 percent carbon to just existing farmlands will not revert the atmosphere and oceans to pre-industrial harmony. Spreading an inch of compost, as Michael Pollan suggests, won’t do it either.

While compost stimulates soil organisms and that moves carbon down from the surface into the root zone for longer sequestrations, most compost decomposes closer to the surface and emits greenhouse gases in the process. That is just the labile carbon cycle, get used to it.

Holistic Management

There is also this problem in Allan Savory’s chemistry. When those advocating Holistic Management, after the fashion of the Savory Institute and others, claim that they can build deep carbon in soils by mob grazing on rotational pastureland, they are speaking of labile carbon. Labile carbon never stops going around. More ominously, climate warming accelerates soil outgassing. One of the standard nightmare scenarios that could even be playing out as we write this involves long-stored labile carbon in swamps, peat bogs, grassy plains and permafrost that may be liberated in one enormous carbon pulse that sends Earth's atmosphere to something akin to that of Venus in a very short time.

Personally we love compost, dung beetles and mob grazing. Compost is the nearest farming gets to a cure-all: it holds the key to recovering dead and damaged soils. It’s cheap and easy, works anywhere, and once it has time to do its magic, any of the common problems of farming and gardening go away. Plants get healthier, animals get stronger, and societies become more secure. Our foods become more abundant, disease-resistant and nutritionally dense.

Compost can be seen as the basic food supply of any garden. It provides a circular economy. It closes the loop between human uses and what gets left afterwards. It supplies the microbial decomposers, re-arrangers and transporters who turn wastes back into resources and deliver them in forms and on schedules that plants need.

But if you are a microbe or a dung beetle, you need more than food. You also need shelter. You need a habitat that helps you survive and encourages you to thrive. And if you are a climate scientist, or just someone concerned with rapid warming of the planet, you are looking for a real solution — something capable of rebalancing the various carbon stores between land, ocean and atmosphere.

And that’s where biochar comes in.

The Coalition on Agricultural Greenhouse Gases (C-AGG) is a multi-stakeholder coalition whose participants include 150 organizations including agricultural producers and producer groups, scientists, environmental NGO’s, carbon market developers, methodology experts, and investors, and other proponents of voluntary agricultural GHG mitigation opportunities and benefits. According to their website:
Despite the critical and pivotal role the agricultural sector can play in climate change mitigation and adaptation, climate change policies and programs are largely directed at point-source emissions reductions activities and approaches. Agricultural and land use GHG mitigation opportunities pose a different set of challenges that require different approaches more appropriate to the sector. Diversity and change are inherent characteristics of agricultural systems.
C-AGG attempts to tap the enormous potential for carbon sequestration in soils by
  • Developing appropriate incentives, tools, and decision support systems to scale sustainable agriculture and climate change solutions
  • Achieving agreement on monitoring, reporting, and verification (MRV) frameworks and metrics to quantify greenhouse gas emissions and ecosystem services
  • Supporting asset value generation for sustainably managed landscapes and development of thriving carbon and ecosystem service markets and results-based payments

Once you begin to measure whether and when what happens in the soil stays in the soil, some conclusions become unavoidable.

The recalcitrant carbon cycle — biomass to biochar — locks carbon up for thousands to millions of years. While useful to stimulate the soil biology, it has the added benefit of holding more oxygen and water, which better mitigates the damage of extreme weather. It also helps the nitrogen cycle, another thing that is seriously out of balance but seldom mentioned.

By combining compost with biochar, or feeding biochar to those herds of migrating herbivores, the story could become one of negative emissions — net sequestration — almost immediately, continuing indefinitely.

And that’s where fake news comes in.

We encountered critics of biochar even before we wrote The Biochar Solution. The loudest of them is Biofuelwatch, an organization we previously respected but no longer do because they are tone deaf to serious and friendly correctives. Because they are close with many social justice, ecology and indigenous rights organizations, their completely irrational proclamations against biochar have been picked up by many in the environmental community and repeated as if they had not already been shown to be not merely without merit, but ridiculous.

In our book we discussed the critics' arguments that we thought had some merit – such as the temptation for large landowners to monocrop genetically modified plantations of fast-growing trees to make biochar for carbon credits — and what could be done to require biochar to be produced more responsibly. Indeed, the word "biochar" should itself connote ecologically responsible sourcing and production, in much the same way that "biodynamic" cannot be used by food growers who don't follow the rules.

But the outlandish claims by Biofuelwatch, repeated loudly and frequently — statements like “No matter how it is done, or what is burned, combustion creates pollution,” “soil carbon is not so much determined by the molecular structure of the carbon itself, but rather by surrounding soil ecosystem properties,” or “pyrolysis is difficult to control and remains largely unproven for commercial application” continue to find traction both in the alternative media and in policy reviews.

These spurious arguments continue to engage a series of very public but false debates. They happen at high profile events and in respected journals but they are false in the sense that those arguing for biochar are using science — laboratory testing, review and re-testing in the real world — while those arguing against are using only polemic, and will not waiver from patently absurd, well-disproven claims even when backed into a corner.

Biofuelwatch’s Rachel Smolker occasionally gets it right, as when she argued:
Forests, soils, ecosystems all are far more than agglomerations of carbon. They are intricate, multidimensional, interconnected, and complex beyond our imaginings and hence beyond our ability to measure, manipulate, and control.

But she is arguing as much against science as against biochar. She is arguing against extending the human ability to measure, manipulate, and control.

In that, she may not be far wrong.

These previous essays have laid out the different dimensions of our problem: a runaway climate threatening near term human extinction; a mode of social organization in conflict with fixed biophysical limits; trusted authorities failing to get it right; confirmation and normalcy bias obscuring our vision; and orphaned solutions sitting it out while the clock ticks. In our next post we will begin to explore a way out of this swamp.

This post is part of an ongoing series we're calling The Power Zone Manifesto. The next installment, the introduction to Book Two: The Solution, appears next week. We post to The Great Change on Sunday mornings and 24 to 48 hours earlier for the benefit of donors to our Patreon page.




The Great Change is published whenever the spirit moves me. Writings on this site are purely the opinion of Albert Bates and are subject to a Creative Commons Attribution Non-Commercial Share-Alike 3.0 "unported" copyright. People are free to share (i.e, to copy, distribute and transmit this work) and to build upon and adapt this work – under the following conditions of attribution, n on-commercial use, and share alike: Attribution (BY): You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-Commercial (NC): You may not use this work for commercial purposes. Share Alike (SA): If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws. Therefore, the content of
this publication may be quoted or cited as per fair use rights. Any of the conditions of this license can be waived if you get permission from the copyright holder (i.e., the Author). Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. For the complete Creative Commons legal code affecting this publication, see here. Writings on this site do not constitute legal or financial advice, and do not reflect the views of any other firm, employer, or organization. Information on this site is not classified and is not otherwise subject to confidentiality or non-disclosure.